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Abstract
We study the properties of ‘semi-coherent’ quantum states introduced by
Mathews and Eswaran in 1973, establishing relations between them and
other families of ‘nonclassical’ states, such as displaced number states and
‘multiphoton’ states. We also analyse the photon number distribution, photon
statistics, the Wigner and marginal distribution functions, and show the ways
for possible further generalizations.

PACS number: 42.50.Dv

1. Introduction

In 1973, Mathews and Eswaran [1] introduced the notion of ‘semi-coherent states’, defining
them as those states of a harmonic oscillator which possess time-independent values of the
quadrature variances σx and σp, different from the vacuum (or coherent state) values. They
have shown that the necessary and sufficient condition for such states is

〈â2〉 = 〈â〉2, (1)

where â = (x̂ + ip̂)/
√

2 is the usual bosonic annihilation operator (we use the units
h̄ = m = ω = 1). Condition (1) is obviously satisfied for the usual coherent states
|α〉, for which â|α〉 = α|α〉. Another trivial example is the Fock state |n〉, for which
〈n|â2|n〉 = 〈n|â|n〉 = 0.

An immediate consequence of equation (1) is the equality of the quadrature variances,
σx = σp, and zero value of the covariance, 1

2 〈x̂p̂ + p̂x̂〉 − 〈x̂〉〈p̂〉 = 0. Thus ‘semi-coherent’
states cannot exhibit usual (second-order) squeezing. However, these states possess many
other interesting properties, which are worth attention. One of the goals of our paper is to
study these properties. In particular, we shall demonstrate a possibility of the fourth-order
squeezing and sub-Poissonian statistics.
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A nontrivial example of ‘semi-coherent’ states, only briefly discussed in [1], is a
normalized superposition of two coherent states of the form

|α⊥β〉 = |α〉 − |β〉〈β|α〉
(1 − |〈β|α〉|2)1/2

. (2)

We use the notation |α⊥β〉 in order to emphasize that the state (2) is orthogonal to the
state |β〉:

〈β|α⊥β〉 = 0.

Therefore, the state |α⊥β〉 (we shall call it Mathews–Eswaran state, or simply MES) can be
considered [1] as an orthogonal projection of the coherent state |α〉 to another coherent state
|β〉. In the state (2) one has [1]

σx = σp = 1

2
+

|〈β|α〉|2|α − β|2
1 − |〈β|α〉|2 , (3)

so that, indeed, σx = σp > 1/2.
In the same 1973, a similar name ‘semicoherent state’ (without a dash in the first word)

was used by Boiteux and Levelut [2] with respect to another family of quantum states, which
are obtained by applying the displacement operator D̂(α) = exp(αâ† − α∗â) to the Fock
states |n〉:

|n;α〉 = D̂(α)|n〉. (4)

Nowadays, states (4) are known under the name ‘displaced number states’. As a matter of
fact, the first examples of such states were given as far back as in 1954 by Plebański [3] and
Senitzky [4]. The general construction,

|ψ0;α〉 = D̂(α)|ψ0〉, (5)

where |ψ0〉 is an arbitrary fiducial state, was considered by Klauder [5] (for other references
see, e.g., the reviews in [6]). At first glance, the states defined according to equations (1)
and (2) seem to be quite different from states (4) and (5). The second goal of our paper is to
show that actually two families of states have much in common, being frequently (although
not always) special cases of each other. In particular, we shall demonstrate that the limiting
case of (2) when β → α is nothing but the displaced first Fock state D̂(α)|1〉.

This paper is organized as follows. In section 2 we calculate average values of different
products of the raising and lowering operators in the MES. The formulae obtained are used
to show the existence of the fourth-order squeezing in these states. In section 3, we study the
relations between MES and various other families of ‘nonclassical’ states. Section 4 is devoted
to the Wigner representation of MES and the marginal probabilities. The photon statistics
and dependence of the Mandel’s Q-factor on the parameters of MES are studied in section 5.
Section 6 contains a brief conclusion and perspectives for the further generalizations.

2. Higher order squeezing

A remarkable property of the state (2) is that it has the same average value of the annihilation
operator â as the coherent state |α〉, 〈α⊥β|â|α⊥β〉 = α, for any value of β. Consequently, the
average values of the quadrature components x and p in the state (2) are the same as in the
coherent state |α〉 [1]. Moreover, the average value of any power of the annihilation operator
in the state (2) is the same as in the coherent state |α〉:

〈ân〉 = 〈â〉n = αn. (6)
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However, the state is only ‘semi-coherent’, because average values of products of operators â

and â† differ from average values of the same products in coherent states:

〈â†mân〉 = α∗mαn +
c

1 − c
(β∗m − α∗m)(βn − αn), (7)

where

c ≡ |〈β|α〉|2 = exp(−|α − β|2). (8)

In particular, the average value of the number operator n̂ ≡ â†â equals

〈â†â〉 = |α|2 +
c

1 − c
|β − α|2. (9)

The second term on the right-hand side of (9) depends only on the quantity |β − α|; it tends
to the unit value in the limiting case β → α, while it monotonically goes to zero when
|β −α| → ∞. Taking into account such a behaviour and comparing equations (3) and (9), we
conclude that the (equal) quadrature variances in the state (2) are confined within the interval
(1/2, 3/2), depending on the value of |β −α| (thus both the variances are greater than those in
the vacuum states, but they are always smaller than those in the first Fock state). Consequently,
as was mentioned already, there is no squeezing in MES in the usual sense. But what about
higher order squeezing?

A concept of ‘generalized squeezing’ for arbitrary Hermitian operators Â, B̂ was
introduced by Walls and Zoller [7]. They said that fluctuations of the observable A are
‘reduced’ if

(�A)2 < 1
2 |〈[Â, B̂]〉|. (10)

In particular, taking in (10) Â = (â2 + â†2)/2 and B̂ = (â2 − â†2)/(2i), we arrive at the
definition of amplitude-squared squeezing proposed by Hillery [8]. In this case inequality
(10) can be written as

〈(â2 + â†2)2〉 − 〈â2 + â†2〉2 < 4〈â†â〉 + 2.

An equivalent form of this inequality is

〈â4 + â†4 + 2â†2â2〉 − 〈â2 + â†2〉2 < 0. (11)

Using relations (6) and (7), one can verify that the left-hand side of (11) is always positive,
being equal to 2c|β2 − α2|2/(1 − c). Consequently, MES do not exhibit amplitude-squared
squeezing.

Another definition of higher-order squeezing was given by Hong and Mandel [9].
According to them, the state |ψ〉 is squeezed to the 2nth order in the x̂ quadrature component,
if the mean value 〈ψ |(�x̂)2n|ψ〉 is less than the mean value of (�x̂)2n in the coherent state,
i.e., 〈(�x̂)2n〉 < 2−n(2n − 1)!!. In particular, for n = 2 we have the requirement for the
fourth-order squeezing 〈(�x̂)4〉 < 3/4. A direct calculation of the fourth-order variance of
coordinate in the simplest MES |0⊥β〉 (when 〈x̂〉 = 〈p̂〉 = 0) yields the following dependence
on parameter β:

〈(�x̂)4〉 = 3

4
+

c|β|2
2(1 − c)

(6 + 3|β|2 + 2β2 + 2β∗2), c = exp(−|β|2). (12)

A similar expression for 〈(�p̂)4〉 is obtained by changing the signs before two last terms on
the right-hand side of (12). We see that the difference 〈(�x̂)4〉 − 3/4 is negative for pure
imaginary β = iγ with |β|2 > 6 (equivalently, 〈(�p̂)4〉 − 3/4 is negative for real β with
|β|2 > 6). For such big values of |β|2 we can neglect the term c in the denominator and
find the value |β|2min = 4 +

√
10 ≈ 7, which gives the minimum of the fourth-order variance
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〈(�x̂)4〉min − 3/4 ≈ − 7
2 e−7 or more precisely 〈(�x̂)4〉min − 3/4 ≈ −0.003. So, the maximal

degree of fourth-order squeezing in MES is rather small. However, it is interesting to note in
this connection that the states possessing higher-order squeezing in the absence of the second-
order (usual) one were constructed in [9] in the form of a rather sophisticated continuous
superposition of coherent states distributed along the line with the weight, which is a product
of Gaussian and odd-power functions. At the same time, MES is a simple superposition of only
two coherent states. It is also worth noting that a simple superposition of four coherent states
with equal amplitudes and phases shifted by π/2 (the so-called òrthogonal-even’ coherent
state [10]) gives the values 〈(�x̂)4〉 = 〈(�p̂)4〉 ≈ 0.7 for |α| ≈ 0.67. In this state, the
fourth-order product 	(4) ≡ 〈(�p̂)4〉〈(�x̂)4〉 equals 0.49 instead of the coherent state value
9/16 = 0.5625. The best minimal value 	(4)

min = (0.6984)2 = 0.4878 was found in [11] by
applying the variational approach to the states of the form

∑K
n=0 cn|4n〉 with K = 6. Earlier,

very close value 	(4) ≈ 0.4901 was obtained in [12] for the superposition of two Fock states√
(1 + δ)/2|0〉 − √

(1 − δ)/2|4〉 with δ = √
150/151.

3. Relations between ‘semi-coherent’, ‘displaced’ and ‘multiphoton’ states

Taking into account the well-known properties of the unitary displacement operator

D̂(α) = D̂−1(−α) = D̂†(−α), D̂−1(α)f (â)D̂(α) = f (â + α) (13)

(where f is an arbitrary analytical function), we immediately conclude that if the property (6)
(which includes as a special case (1)) holds for some state |ψ0〉, then it holds automatically
for the whole family of displaced states (5). In particular, all displaced number states are
‘semi-coherent’ states in the sense of (1), which means that ‘semicoherent’ states of Boiteux
and Levelut [2] are, indeed, special cases of ‘semi-coherent’ states of Mathews and Eswaran.
Obviously, not all displaced states are ‘semi-coherent’, but only those whose ‘fiducial’ state
|ψ0〉 satisfies the conditions

〈ψ0|â|ψ0〉 = 〈ψ0|â2|ψ0〉 = 0. (14)

An infinite number of states satisfy these conditions. Writing |ψ0〉 = ∑∞
n=0 cn|n〉, we obtain

from (14) the restrictions
∞∑

n=0

c∗
ncn+1

√
n + 1 = 0,

∞∑
n=0

c∗
ncn+2

√
(n + 1)(n + 2) = 0.

In particular, any superposition of Fock states, which has ‘gaps’ in the sequence {cn} whose
widths always exceed 2, can serve as a required fiducial state. The problem is to choose ‘the
most interesting’ families among such superpositions. One example corresponds to families
of ‘fractional photons’ [13], whose simplest representative corresponds to the states such as∑∞

n=0 zn|kn〉/√n! with k � 3. Other families of ‘multiphoton’ states |α〉k , defined by the
conditions

âk|α〉k = αk|α〉k, k〈α|âj |α〉k = 0, j = 1, 2, . . . , k − 1, (15)

with k = 3, 4, . . . , result in the Fock decompositions of the form (in the simplest case)∑∞
n=0 αkn|kn〉/√(kn)!. Such states (they include, in particular, the ‘orthogonal-even’ coherent

states mentioned in the preceding section) have been extensively studied, e.g., in papers [14–19]
(for other references see [6]). Contrary to the displaced number states with quantized values
of quadrature variances σx = σp = n + 1/2, and the Mathews–Eswaran states (2), whose
variances are confined in the interval (1/2, 3/2), the quadrature variances in the k-photon
states (15) can assume any value (greater than 1/2), because these states can be represented
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as superpositions of k coherent states, whose labels are uniformly distributed along the circle
|α| = const: |α〉k = ∑k

m=1 cm|α exp(iφm)〉, φm = 2πm/k, thus the value of the variance is
determined mainly by the distance between coherent components, which grows unlimitedly
with increase of |α|.

The expansion of the state (2) over the Fock basis has the form

|α⊥β〉 = exp(−|α|2/2)√
1 − c

∞∑
n=0

[αn − βn eβ∗(α−β)]
|n〉√
n!

. (16)

Formally, the right-hand sides of equation (2) or (16) are not defined for β = α. However,
taking β = α + ρ eiχ , one can easily verify that in the limit ρ → 0 the state (2) goes to the
state eiχ |α⊥α〉, where

|α⊥α〉 = exp(−|α|2/2)

[
α∗|0〉 +

∞∑
m=1

αm−1

√
m!

(|α|2 − m)|m〉
]

. (17)

A distinguished feature of the state (17) is its orthogonality to the coherent state |α〉. However,
this state is not new. Comparing (17) with the explicit decomposition of the displaced number
states [20, 21]3

D̂(α)|n〉 = exp(−|α|2/2)

∞∑
m=0

(
n!

m!

)1/2

αm−nL(m−n)
n (|α|2)|m〉 (18)

(where L(k)
n (x) is the associated Laguerre polynomial defined as in [24]), one can see that (17)

coincides with the displaced first Fock state D̂(α)|1〉 (with an opposite sign). The properties
of this state (photon statistics, quasiprobability distributions, etc) have been studied in detail
in [25].

Various finite superpositions of coherent states have been considered in the literature for
decades, beginning with the studies [14, 26, 27] (for reviews see, e.g., [6, 28]). In particular,
different superpositions of two coherent states c1|α〉 + c2|β〉 were studied in [29]. However, as
a rule, the coefficients c1 and c2 of these superpositions were independent of the parameters
of coherent components α and β. The distinguished feature of MES (2) is that the coefficient
of the superposition is determined by the scalar product between its components (a specific
superposition of the vacuum and coherent state |α〉 − exp(−|α|2/2)|0〉, which is nothing but
the state |α⊥0〉, was considered in [30] as an example of the ‘most nonclassical’ truncated
states).

4. Wigner function and marginal probabilities

Frequently, squeezing properties of quantum states are illustrated with the aid of some
quasidistributions in the phase space, such as the Wigner or Husimi function. Since the
contour plots of these functions for coherent or Fock states are nothing but circles, the absence
of squeezing in these states becomes quite evident (as well as different levels of quadrature
fluctuations in the squeezed states, whose contour plots are ellipses). In this connection, it
seems interesting to consider the Wigner function corresponding to the Mathews–Eswaran state
(2). Since the form of the quasiprobability distribution is not changed by the displacement
operator (and quadrature variances are left intact by the operator D̂(α)), it is sufficient to
consider the Wigner function

W(x, p) =
∫

ψ (x + y/2) ψ∗ (x − y/2) exp(−ipy) dy

3 Actually, matrix elements 〈m|D̂(α)|n〉 have been known long before [22, 23].
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Figure 1. The surface and contour plots of the Wigner function (19) for β = 1. Region I in the
right plot corresponds to negative values of the Wigner function.

of the family of ‘fiducial’ states |0⊥β〉 centred at the origin. In this case, parameter β can be
chosen real, because changing its phase is equivalent to rotating coordinate axes. The explicit
expression is as follows:

W0⊥β(x, p) = 2 exp(−p2)

1 − exp(−β2)

{
exp(−x2) + exp[−(x −

√
2β)2 − β2]

− 2 cos(
√

2βp) exp

[
−1

2
(
√

2x − β)2 − β2

2

]}
. (19)

The surface and contour plots of this quasidistribution, given in figure 1, show the existence
of the domain with negative values of W , indicating the ‘nonclassical’ nature of the MES.
Another striking feature is the strong asymmetry between x and p variables. Nonetheless, the
quadrature variances σx and σp are the same, and they are preserved with the course of time,
when the plots rotate around the origin.

There is also strong asymmetry with respect to positive and negative values of the x
coordinate, which is well pronounced in the probability density ρ(x) = |ψ(x)|2. For a
complex parameter β = |β| exp(iϕ) we obtain

ρ0⊥β(x; |β|, ϕ) =
{

exp(−x2) + exp[−(x −
√

2|β| cos ϕ)2 − |β|2]

− 2 exp

[
−1

2
(
√

2x − |β| cos ϕ)2 − |β|2
2

(1 + cos2 ϕ)

]

× cos[|β| sin ϕ(
√

2x − |β| cos ϕ)]

}
(
√

π [1 − exp(−|β|2)])−1. (20)

The plots of function (20) for different values of parameters |β| and ϕ are shown in figure 2.
Varying the phase ϕ with the fixed value of |β| we obtain quite different distributions, but all
of them have the same mean values 〈x〉 = 0 and 〈x2〉 = 1/2 + |β|2/[exp(|β|2) − 1]. Note that
the shift ϕ → ϕ + π/2 is equivalent to the transformation from the coordinate representation
to the momentum one.
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Figure 2. The coordinate probability density (20) for different values of parameters |β| and ϕ.
The left plot corresponds to |β| = 1 (as in figure 1). In the right plot ϕ = 0.

5. Photon statistics

The photon distribution function pn ≡ |〈n|ψ〉|2 is not invariant with respect to the unitary
transformation performed by means of the displacement operator. For the generic Mathews–
Eswaran state (2) the expansion (16) yields

pn(α;β) = 1

n!(1 − c)
{|α|2n e−|α|2 + c[|β|2n e−|β|2 − 2 Re((αβ∗)n e−αβ∗

)]}. (21)

The special cases of formula (21) are as follows:

pn(0;β) = |β|2n

n!

exp(−2|β|2)
1 − exp(−|β|2) , n > 0, p0(0;β) = 1 − exp(−|β|2), (22)

pn(α; 0) = |α|2n

n!

exp(−|α|2)
1 − exp(−|α|2) , n > 0, p0(α; 0) = 0, (23)

pn(α;−α) = |α|2n

n!
exp(−|α|2) ×

{
tanh(|α|2), n even
coth(|α|2), n odd.

(24)

Distribution (23) was considered in [30] as an example of truncated coherent state. Formula
(24) is especially interesting because the photon distribution functions (PDF) for even and odd
values of n show the same behaviour as in the case of even and odd coherent states [27]

|α〉± = |α〉 ± | − α〉√
2[1 ± exp(−2|α|2)] , (25)

provided the PDFs corresponding to the states |α〉± are rescaled (due to normalization) by the
factors 1

2 [1 ∓ exp(−2|α|2)], respectively.
The photon distribution generating function

G(z) ≡
∞∑

n=0

znpn (26)

is a useful tool for calculating the factorial moments

n(k) ≡
∞∑

n=0

n(n − 1) · · · (n − k + 1)pn (27)
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due to the formula

n(k) = (d(k)G/dzk)|z=1. (28)

In the case of the photon distribution (21) we have

G(z) = (1 − c)−1{exp[(z − 1)|α|2] + c[exp[(z − 1)|β|2] − 2 Re(exp[(z − 1)αβ∗])]} (29)

and

n(k) = (1 − c)−1{|α|2k + c[|β|2k − 2 Re[(αβ∗)k]]}. (30)

One of frequently used characteristics of the photon statistics is Mandel’s Q-factor

Q = n2 − n̄2 − n̄

n̄
≡ 〈â†2â2〉 − 〈â†â〉2

〈â†â〉 . (31)

Using formula (7) or (30) one can obtain the following expression:

Q(α;β) = c|β − α|2[|β + α|2 − 2|α|2 − 2|β|2c]

(1 − c)[|α|2 + c(|β − α|2 − |α|2)] . (32)

Obviously, the photon statistics is super-Poissonian (Q > 0) for |β| � |α|. If |α| is not very
small (|α| > 1, for example), then Q is only slightly different from zero in this case, due to
the factor c, which rapidly goes to zero when |β − α| � 1. On the other hand, for α = 0 we
have

Q(0;β) = |β|2 1 − 2 exp(−|β|2)
1 − exp(−|β|2) , (33)

and this expression monotonically increases from −1 at β → 0 to arbitrarily large values
when |β| → ∞, changing the sign at |β|2 = ln 2. However, if |α| � 1, but α 
= 0, then the
right-hand side of (33) should be multiplied by the factor

|β|2 exp(−|β|2)
|α|2 + |β|2 exp(−|β|2) ,

which results in the exponential decay of Q as

|β|4 exp(−|β|2)
|α|2 + |β|2 exp(−|β|2)

for |β| → ∞, after Q attains the maximal value Qmax ≈ ln(1/|α|2) at |β|2 ≈ ln(1/|α|2).
Moreover, for any value of α one can find the (finite) regions in the complex plane β,

which result in the sub-Poissonian statistics (Q < 0). For example, this happens if one extracts
from the coherent state its projection to the vacuum state [30]:

Q(α; 0) = −|α|2 exp(−|α|2)
1 − exp(−|α|2) < 0, (34)

moreover, Q(α; 0) → −1 when α → 0. In figure 3 we show the dependence of Q-factor on
parameters α and β.

For |β| = |α|, using the parametrization β = α exp(iϕ), we find the expression

Q(|α|;ϕ) = 8c|α|2 sin2(ϕ/2)(cos ϕ − c)

(1 − c)[1 + c(1 − 2 cos ϕ)]
, c = exp[−4|α|2 sin2(ϕ/2)]. (35)

In this case, the Q-factor is obviously negative for ϕ � π/2. For example, if ϕ = π , then

Q(α;−α) = − 8|α|2c(1 + c)

(1 + 3c)(1 − c)
< 0, c = exp(−4|α|2), (36)
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. . . . . . . . . .

Figure 3. Mandel’s Q-factor of the ME state as a function of α with fixed values of parameter β

(at the left) and as a function of β with fixed values of α (at the right). The values of β in the left
plot are as follows: I – β = 2.6, II – β = 1.8, III – β = 1, IV – β = 0.3.
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.

. . . . . . . .

Figure 4. Mandel’s Q-factor of the ME state with β = α exp(iϕ) as a function of α for different
fixed values of the phase ϕ (at the left) and as a function of ϕ for different fixed values of α (at the
right).

so the state |α⊥ − α〉 always shows the sub-Poissonian statistics (it is worth noting that the
photon statistics of even/odd coherent states is super/sub-Poissonian). However, Q can be
positive for small values of ϕ, depending on the value of |α|. For example, if ϕ = 0, then we
obtain

Q(α;α) = 2|α|2 − 1

|α|2 + 1
, (37)

and this expression goes to −1 for |α| → 0, but it is positive for |α|2 > 1/2, going to the
asymptotical value 2 when |α| → ∞. If ϕ is close to zero (but different from zero), then Q
approaches some maximal value (smaller than 2) but finally goes to zero as |α| → ∞. In
figure 4 we show the dependence of Q-factor on parameters α and ϕ.
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To analyse the evolution of the domain of sub-Poissonian statistics in the complex β-plane
in dependence of α, we can always assume that α is real and nonnegative. For α = 0 this
domain is simply the internal part of the circle |β|2 = ln 2. With the increase of α, this
circle exhibits some deformations, expanding more to the left semiplane than to the right one.
When α � 1, then the boundary again becomes close to a circle |β + α| = α

√
2, whose

centre is shifted to the point −α and radius equals α
√

2. Note, however, that the absolute
value of Q-factor is very small in this case, and even at the centre of the circle we have
Q(α;−α) ≈ −8α2 exp(−4α2).

The following generalization of the Mandel parameter was proposed in [31]:

Sk = n(k)/〈n〉k − 1 (38)

(for k = 2 one has S2 = Q/〈n〉). Using formula (30) one can calculate the parameter Sk(α, β)

for any values of k, α and β. We confine ourselves here to the cases which can be analysed in
the most simple way.

Sk(α, 0) = [1 − exp(−|α|2)]k−1 − 1. (39)

This quantity is negative for any k � 2, meaning the sub-Poissonian statistics for any order.

Sk(0, β) = [exp(|β|2) − 1]k−1 − 1. (40)

This quantity is negative if |β|2 < ln 2, i.e., the boundary of the sub-Poissonian behaviour
does not depend on k.

6. Conclusion

We have demonstrated that the Mathews–Eswaran states defined by equation (2) possess
interesting ‘nonclassical’ properties, which include the higher-order squeezing (in the Hong–
Mandel sense) and sub-Poissonian statistics. These properties are the consequences (to certain
extent) of relation (1) or (6), which are fulfilled for the eigenstates of operator â. It is worth
noting in this connection that deriving equations (6)–(9) we did not use explicit form of
operator â or the commutation relation between â and â† (except for the second equality in
(8), which holds for the scalar product of Klauder–Glauber’s coherent states). This gives
a possibility of introducing a large family of ‘generalized Mathews–Eswaran states’, which
satisfy property (6) for an arbitrary operator Â. All such states have the same structure as the
superposition (2), where the components |α〉 and |β〉 should be understood as eigenstates of
the operator Â. For example, taking Â = âk we thus obtain ‘semi-coherent’ generalizations
of the ‘Barut–Girardello coherent states’ [32] or even/odd coherent states [27] for k = 2,
and of ‘multiphoton’ states for k � 3. Choosing Â = f (â†â)âk (with k = 1, 2, . . .),
we arrive at ‘semi-coherent’ generalizations of ‘nonlinear’ coherent states [33–37]. Some
specific choices of the function f (n̂) could be especially interesting because they result in the
same commutation relation [Â, Â†] = 1 as for the operators â and â†, although Â 
= â [38].
However, all such generalizations deserve separate studies.
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